Name:

Mathematical Questions

- · Circle your final answer on the handout. Show your work on binder paper! Show units!
- Answers are provided at the end. Don't cheat! Check when finished!
- For rate order type problems be sure to include the required work as shown on previous worksheets.
- 1) For the reaction A + 3B \rightarrow 2C, how does the rate of disappearance of B compare to the rate of production of C?
 - a. the rate of disappearance of B is 1/2 the rate of appearance of C
 - b. the rate of disappearance of B is $\frac{3}{2}$ the rate of appearance of C
 - c. the rate of disappearance of B is $^{2}/_{3}$ the rate of appearance of C
 - d. the rate of disappearance of B is $1/_3$ the rate of appearance of C
- 2) For the reaction $2A + 3B \rightarrow 4C + 5D$, the rate of the reaction in terms of ΔA would be written as:
 - a. –ΔΑ/Δt

d. +¹/₂ ΔΑ/Δt e. -2 ΔΑ/Δt

d. $+\frac{1}{3}\Delta B/\Delta t$

e. $-3 \Delta B/\Delta t$

d. $-4 \Delta C/\Delta t$

e. $-\frac{1}{4}\Delta C/\Delta t$

Period:

- b. $-\frac{1}{2}\Delta A/\Delta t$
- c. +∆A/∆t

3) 3. For the reaction $2A + 3B \rightarrow 4C + 5D$, the rate of the reaction in terms of ΔB would be written as

- a. –ΔB/Δt
- b. $+\Delta B/\Delta t$
- c. $-\frac{1}{3}\Delta B/\Delta t$

4) For the reaction $2A + 3B \rightarrow 4C + 5D$, the rate of the reaction in terms of ΔC would be written as

- a. +∆C/∆t
- b. +4 ΔC/Δt
- c. $+\frac{1}{4}\Delta C/\Delta t$
- **5)** In the combustion of methane, $CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(g)}$, which reactant has the greatest rate of disappearance?
 - a. CH4
 - b. O₂
 - c. CO₂

- d. H₂O
- e. CH₄ and O₂ have the same rate of disappearance.
- 6) Which of the following is not a possible graph of concentration versus time for a reactant?

7) Assuming that each of the following graphs has the same concentration and time axes, which has the greatest initial rate of disappearance of reactant?

Seat#:

Worksheet #7

8)	The following graph shows the kinetics curves for the reaction					
		en with hydrogen to form v	water: $O_{2(g)} + 2H_{2(g)} \rightarrow 2H_2O_{(g)}$	·	dashed	
	vvnicn	the deebed outrie		ration		
	а. ь	the grov ourve		neer		
	D.	the block ourse		ദ	gray	
	С. d	cither the grover the block				
	u.	Any of these ourses could	k cuive		black	
	e.	Any of these curves could	a be nydrogen		Time	
9) A scientist conducts an experiment to determine the rate of the following reaction: $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ If t initial concentration of N ₂ was 0.500 M and the concentration of N ₂ was 0.450 M after 0.400 a what is the r				reaction: $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ If the 2450 M after 0 100 s, what is the rate of		
	the rea	ction?		112 1100 1		
	а.	-0.500 M/s		d.	-10.0 M/s	
	b.	-1.00 M/s		e.	-0.250 M/s	
	C.	-5.00 M/s				
10)	A scier the initi of NO f	ntist conducts an experime al concentration of N ₂ was formation?	nt to determine the rate of NO 0.500 M and the concentratio	formation on of N ₂ w	in the reaction: $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ If vas 0.450 M after 0.100 s, what is the rate	
	a.	0.500 M/s		d.	10.0 M/s	
	b.	1.00 M/s		e.	0.250 M/s	
	C.	5.00 M/s				
11)	If the raw	ate of appearance of O_2 in during this time?	the reaction: $2O_{3(g)} \rightarrow 3O_{2(g)}$ is	s 0.250 M	l/s over the first 5.50 s, how much oxygen	
	a.	1.38 M		d.	0.25 M	
	b.	4.13 M		e.	0.46 M	
	C.	0.69 M				
12)	HI diss	ociates to form I_2 and H_2 : 2 ate of appearance of $I_{2(q)}$?	$2HI_{(g)} \rightarrow H_{2(g)} + I_{2(g)}$ If the conce	entration	of HI changes at a rate of -0.45 M/s, what	
	a.	0.90 M/s		d.	1.00 M/s	
	b.	0.45 M/s		e.	0.13 M/s	
	C.	0.23 M/s				
13)	If the ra	ate of formation of ammoni	a is 0.345M/s_what is the rate	of disan	pearance of N ₂ ? N ₂ + $3H_{2}$ → $2NH_{2}$	
,	a.	0.173 M/s		d.	245 M/s	

e. 0.518 M/s

a.	0.173 M/s	
b.	0.345 M/s	

c. 0.690 M/s

14) If the rate of formation of ammonia is 0.345M/s, what is the rate of disappearance of H₂? $N_{2(a)}$ +3H_{2(a)} \rightarrow 2NH_{3(a)}

- a. 0.173 M/s
- b. 0.345 M/s
- c. 0.0522 M/s
- d. 245 M/s
- e. 0.518 M/s

15) For the reaction $2A + B + 2C \rightarrow D + 2E$, rate =k[A]² [B]¹ [C]¹ Which of the following statements is false:

- a. the reaction is second order in [A]
- b. the reaction is first order in [B]
- c. the reaction is second order in [C]
- d. the reaction is 4th order overall

16) For the reaction $1A + 2B + 1C \rightarrow 2D + 1E$, rate law is: rate =k [B]² [C]¹ Which of the following statements is false:

- a. the reaction is first order in [A]
- b. the reaction is second order in [B]
- c. the reaction is first order in [C]
- d. the reaction is third order overall

c. first

17) For the to B is	e rate law	Rate = $k[A]^{1/2}[E_{}]$, and the to	3], the partial order tal order is	with respect to A	is	, the partial order with respect
a.	¹ / ₂ ; 0; ¹ / ₂	2			d.	1/2
b.	¹ / ₂ ; 1; 1				e.	The orders cannot be determined
C.	¹ / ₂ ; 1 ; ³ / ₂	2				without a chemical reaction.
18) For the	e rate law , an	Rate = k[A][B] ³ d the overall re	^{3/2} , the order with re-	spect to A is		, the order with respect to B is
a.	0: 3/2: 3/2	2			d.	1: ³ / ₂ : ⁷ / ₂
b.	$1: \frac{3}{2}: 1$				e.	The orders cannot be determined
C.	1; ³ / ₂ ; ⁵ /	2				without a chemical reaction.
19) The rea	action A +	$-2B \rightarrow C$ is firs	t order in B and A.	The overall order	of th	e reaction is
, а.	first				d.	zero
b.	second				e.	fourth
C.	third.					
20) The reconcer	eaction Cl	$HCI_{3(g)} + CI_{2(g)} - CHCI_3$ is increased.	$\rightarrow CCl_{4(g)} + HCl_{(g)}$ hat ased by a factor of t	s the following ra five while the cor	ate la icenti	w: Rate = $k[CHCl_3][Cl_2]$. If the ration of C_{l_2} is kept the same, the rate will
a.	double		-		d.	increase by a factor of five
b.	triple.				e.	decrease by a factor of one-fifth
С.	stay the	same				
21) The read is redu	21) The reaction $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ has the following rate law: Rate = $k[O_2][NO]^2$. If the concentration of NO is reduced by a factor of two, the rate will					
a.	double				d.	be reduced by one-half
b.	quadrup	le			e.	remain the same
С.	be redu	ced by one-qua	arter			
22) The rat reactio	te of a rea n with res	action is found t pect to this rea	to double when the lictant is	concentration of	one i	reactant is quadrupled. The order of the
a.	first				d.	one-half
b.	second				e.	third
C.	one-qua	rter				
23) Given 1	the follow $NO(g) + Cl_2$	ing data, detern $(g) \rightarrow 2NOCl(g)$	mine the order of th	e reaction with re	espec	t to Cl ₂ .
Experi	ment	[NO] (<i>M</i>)	[Cl ₂] (M)	Rate (M/s)		
1		0.0300	0.0100	3.4×10^{-5}		
2		0.0150	0.0100	8.5×10^{-5}		
3		0.0150	0.0400	3.4×10^{-5}		
a.	First				d.	Fourth
b. c.	Second Third				e.	Fifth
24) Given 1	the follow	ing data, determing $H_2(g) + 2ICl(g)$	mine the order of th g) $\rightarrow I_2(g) + 2HCl(g)$	e reaction with re	espec	t to H ₂ .
Experin	nent	[H ₂] (torr)	[ICl] (torr)	Rate (M/s)		
- 1		250	325	1.34		
2		250	81	0.331		
3		50	325	0.266	-	
a.	one-half				d.	third
b.	second				e.	three-halves

a.

b. b. rate = $k[A] [B]^2 [C]$

25) Given the following data, determine the order of the reaction with respect to NO(g). $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$ [NO] (*M*) [Cl₂] (M) Rate (M/s) Experiment 0.0300 0.0100 3.4×10^{-4} 1 8.5×10^{-5} 2 0.0150 0.0100 3 0.0150 0.0400 3.4×10^{-4} a. first d. fourth second fifth b. e. c. third **26)** Determine the overall order of the reaction: $H_{2(q)} + 2ICI_{(q)} \rightarrow I_{2(q)} + 2HCI_{(q)}$ from the following data: Experiment P_H (torr) Rate (torr/s) P_{ICI} (torr) 1 250 325 1.34 2 250 0.331 81 3 50 325 0.266 a. first d. fourth b. second zeroth e. third c. **27)** Determine the overall order of the reaction $2NO_{(g)} + Cl_{2(g)} \rightarrow 2NOCl_{(g)}$ from the following data: Experiment [NO] (*M*) Rate (M/s) $[Cl_2](M)$ 0.0300 0.0100 3.4×10^{-4} 1 8.5×10^{-5} 2 0.0100 0.0150 3.4×10^{-4} 0.0400 3 0.0150 d. fourth a. first b. second е fifth c. third 28) Given the following data, determine the rate law for the reaction $\mathrm{NH}_4^+(aq) + \mathrm{NO}_2^-(aq) \rightarrow \mathrm{N}_2(g) + 2\mathrm{H}_2\mathrm{O}()$ $[\mathrm{NH}_4^+](M)$ Experiment $[NO_2^-](M)$ Rate (M/s) 0.2500 0.2500 1.25×10^{-3} 1 2 0.5000 0.2500 2.50×10^{-3} 3 0.2500 0.1250 6.25×10^{-4} k[NH4⁺] [NO2⁻] d. k[NH₄+]^{1/2} [NO₂-]² a. k[NH4+]2 [NO2-] k[NH₄⁺] [NO₂⁻]² b. e. k[NH4⁺] [NO2⁻]^{1/2} c. 29) Given the following data, determine the rate law for the reaction $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$ Experiment [NO] (M) [Cl₂] (M) Rate (M/s) 0.0300 0.0100 3.4×10^{-4} 1 2 0.0150 0.0100 8.5×10^{-5} 3 0.0150 0.0400 3.4×10^{-4} Rate = $k[NO] [Cl_2]$ Rate = $k[NO]^2 [Cl_2]^2$ a. d. Rate = $k[NO] [Cl_2]^2$ Rate = $k[NO] [Cl_2]^{1/2}$ b. e. Rate = $k[NO]^2 [Cl_2]$ c. **30)** What is the rate law for the reaction $2A + 2B + 2C \rightarrow$ products Initial [A] Initial [B] Initial [C] rate 0.273 0.763 0.400 3.0 0.819 0.763 0.400 9.0 0.273 1.526 0.400 12.00.273 0.763 0.800 6.0 a. rate = k[A][B][C]

c. c. rate = $k[A]^3 [B]^4 [C]^2$

d. d. rate = $k[A]^2 [B]^2 [C]^2$

31) The initial rate data for the reaction $2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$ is shown in the following table. Determine the value of the rate constant for this reaction.

Rate (*M*/s) 3.4×10^{-4}

 8.5×10^{-5}

 3.4×10^{-4}

Experiment
 $[N_2O_5](M)$ Rate (M/s)

1
 1.28×10^2 22.5

2
 2.56×10^2 45.0

a.
 4.09 s^{-1} d.
 0.225 s^{-1}

b.
 0.176 s^{-1} e.
 80.1 s^{-1}

c.
 0.0569 s^{-1} f.
 80.1 s^{-1}

 $[Cl_2](M)$

0.0100

0.0100

0.0400

32) Given the following data, determine the rate constant of the reaction $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$

Experiment [NO] (*M*) 1 0.0300 2 0.0150 3 0.0150 a. 1.13 $M^{-2} s^{-1}$ b. 9.44 $M^{-2} s^{-1}$ c. 37.8 $M^{-2} s^{-1}$ f.

33) Which point as labeled by an asterisk (*) on the following energy profile is the transition state?

34) The energy profiles for four different reactions are shown. Which reaction requires the most energetic collisions to reach the transition state?

37) Collision theory assumes that the rate of a reaction depends on

- a. the energy of collisions.
- b. the orientation of colliding molecules.
- c. the energy of collisions and the orientation of colliding molecules.

35) The following energy profiles for four different reactions are shown. Which reaction is the most

d. 0.0265 M⁻² s⁻¹

e. 59.6 M⁻² s⁻¹

36) The following energy profiles for four different reactions are shown. Which reaction is the most exothermic?

- d. the change in energy between the products and the reactants.
- e. the change in free energy between the reactants and products

38) The energy needed for a reaction to proceed from reactants to products is called

- a. collision energy
- b. kinetic energy
- c. activation energy

39) For the reaction diagram shown, which of the following statements is true?

- a. Line W represents the ΔH for the forward reaction; point B represents the transition state
- b. Line W represents the activation energy for the forward reaction; point B represents the transition state
- c. Line Y represents the activation energy for the forward reaction; point C represents the transition state
- d. Line X represents the ΔH for the forward reaction; point B represents the transition state

40) A proposed mechanism for the photodecomposition of ozone in the atmosphere is

Step 1: $O_{3(q)} + hv \rightarrow O_{2(q)} + O_{(q)}$ Step 2: $O_{3(q)} + O_{(q)} \rightarrow 2O_{2(q)}$

Which of the following species is an intermediate?

(An intermediate is something that is produced in one step, but then used up in a later step. Therefore, it doesn't show up in the "overall" balanced equation.)

- a. O₃
- b. hv (light)
- c. O₂

41) A proposed mechanism for the decomposition of ozone in the atmosphere is

Step 1: $Cl_{(g)} + O_{3(g)} \rightarrow ClO_{(g)} + O_{2(g)}$ Step 2: $ClO_{(g)} + O_{3(g)} \rightarrow Cl_{(g)} + 2 O_{2(g)}$

Which of the following species is an intermediate?

- a. Cl
- b. O₃
- c. CIO

42) The reaction $NO_{2(g)} + CO_{(g)} \rightarrow NO_{(g)} + CO_{2(g)}$ is thought to occur by the following mechanism: Step 1: $NO_{2(g)} + NO_{2(g)} \rightarrow NO_{3(g)} + NO_{(g)}$

Step 2: $NO_{3(g)} + CO_{(g)} \rightarrow NO_{2(g)} + CO_{2(g)}$ Which of the following species is an intermediate?

- a. NO₂
- b. NO
- c. NO₃
- d. CO₂
- e. This mechanism has no intermediates.

43) A proposed mechanism for the decomposition of ozone in the stratosphere is:

Step 1: $CI_{(q)} + O_{3(q)} \rightarrow CIO_{(q)} + O_{2(q)}$ Step 2: $ClO_{(g)} + O_{3(g)} \rightarrow Cl_{(g)} + 2O_{2(g)}$ What is the order of Step 1? a. 0

- b. 1
- c. 2

- d. 3
- e. More information is needed to answer this question.
- 44) A proposed mechanism for the reduction of nitrogen as NO by hydrogen is:

Step 1: $H_{2(g)} + 2NO_{(g)} \rightarrow N_2O_{(g)} + H_2O_{(g)}$ Step 2: $N_2O_{(g)} + H_{2(g)} \rightarrow N_{2(g)} + H_2O_{(g)}$ What is the order of Step 1?

- a. 1
- b. 2
- c. 3

- d. 0
- e. More information is needed to answer this question

- d. 0 e. This mechanism has no intermediates.

potential energy

thermodynamic energy

d.

e.

- **O**₂ d. e.
 - This mechanism has no intermediates.

45) The mechanism for the reaction $2H_2O_{2(aq)} \rightarrow 2H_2O_{(l)} + O_{2(g)}$ in the presence of I⁻ (aq) is proposed to be: Step 1: $H_2O_{2(aq)} + I_{(aq)} \rightarrow H_2O_{(l)} + OI_{(aq)}$ (slow) Step 2: $H_2O_{2(aq)} + OI_{(aq)} \rightarrow H_2O_{(l)} + O_{2(g)} + I_{(aq)}$ (fast) What is the order of the rate-determining step? a. 0 d. 3

- b. 1
- c. 2

e. More information is needed to answer this question.

46) A proposed mechanism for the reduction of nitrogen as NO by hydrogen is:

Step 1: $H_{2(g)} + 2NO_{(g)} \rightarrow N_2O_{(g)} + H_2O_{(g)}$ (slow) Step 2: $N_2O_{(g)} + H_{2(g)} \rightarrow N_{2(g)} + H_2O_{(g)}$ (fast)

What is the rate law?

- a. Rate = $k[H_2][NO]$
- b. Rate = $k[H_2]^2$ [NO]
- c. Rate = $k[H_2] [NO]^2$

d. Rate = $k[H_2]^2 [NO]^2$

d. Rate = $k[H_2O_2][OI^-]$

e. Rate = $k[H_2O_2]^2 [I^-]/[H_2O]$

e. More information is needed to answer this question.

47) The mechanism for the reaction $2H_2O_{2(aq)} \rightarrow 2H_2O_{(l)} + O_{2(g)}$ in the presence of $I_{(aq)}$ is proposed to be Step 1: $H_2O_{2(aq)} + I_{(aq)} \rightarrow H_2O_{(l)} + OI_{(aq)}$ (slow)

Step 2: $H_2O_{2(aq)} + OI_{(aq)} \rightarrow H_2O_{(l)} + O_{2(g)} + I_{(aq)}$ (fast)

What is the rate law for the overall reaction?

- a. Rate = $k[H_2O_2]$
- b. Rate = $k[H_2O_2]^2$
- c. Rate = $k[H_2O_2][I^-]$

48) Which of the following statements about catalysts is false:

- a. catalysts do not appear in the balanced equation
- b. catalysts reduce the activation energy for a reaction
- c. biological catalysts are called enzymes
- d. catalysts do not alter the mechanism of the reaction and never appear in the rate law
- e. since catalysts are recycled, even a small amount of catalyst can accelerate a reaction

49) Which of the following statements is false:

- a. Changing the temperature does not change the activation energy for a reaction
- b. At higher temperature a higher percentage of reactants have enough energy to get over the transition state
- c. The mechanism, rate law, and activation energy will all change when a catalyst is added.
- d. The general rate law for a reaction does not changes with temperature, but the rate constant does change
- e. The rate constant "k" for a reaction does not change when the temperature increases.

50) A proposed mechanism for the following reaction is shown below. Identify the catalyst in the reaction. $2H_2O_{2(aa)} \rightarrow 2H_2O_{(aa)} + O_2$ in the presence of $I_{(aa)}^-$

- c. I⁻
- **51)** The steps in a reaction mechanism are as follows. Which species is acting as a catalyst?

	Step 1: $Ag^+_{(aq)}$ + $Ce^{4+}_{(aq)}$ \leftrightarrow $Ag^{2+}_{(aq)}$ + $Ce^{3+}_{(aq)}$		
	Step 2: $TI^{+}_{(aq)}$ + $Ag^{2+}_{(aq)}$ \rightarrow $TI^{2+}_{(aq)}$ + $Ag^{+}_{(aq)}$		
	Step 3: $TI^{2+}_{(aq)}$ + $Ce^{4+}_{(aq)}$ \rightarrow $TI^{3+}_{(aq)}$ + $Ce^{3+}_{(aq)}$		
a.	Ag ⁺	d.	Ag ²⁺
b.	TI ⁺	e.	TI ³⁺
С	Ce ³⁺		

Answer Key (a	answers have not been checked! Please tell me if s	something seems off!)
1. B	18.C	35.B
2 . B	19.B	36 . A
3 . C	20 .D	37 .C
4. C	21 .C	38 .C
5. B	22 .D	39 .B
6. C	23 . A	40.D
7. A	24 .C	41.C
8. C	25 .B	42 .C
9. A	26 .B	43 .C
10.B	27 .C	44.C
11.A	28 . A	45 .C
12 .C	29 .C	46 .C
13 .A	30. B	47.C
14 .E	31.B	48 .D
15.C	32 .C	49 .E
16.A	33 .C	50 .C
17.C	34 . B	51.A